Случайный афоризм
Писатель обречен на понимание. Он не может стать убийцей. Альбер Камю
 
новости
поиск по автору
поиск по тематике
поиск по ключевому слову
проба пера
энциклопедия авторов
словарь терминов
программы
начинающим авторам
ваша помощь
о проекте
Книжный магазин
Главная витрина
Книги компьютерные
Книги по психологии
Книги серии "Для чайников"
Книги по лингвистике
ЧАВо
Разные Статьи
Статьи по литературе

Форма пользователя
Логин:
Пароль:
регистрация
 детектив



 драмма



 животные



 история



 компьютерная документация



 медицина



 научно-популярная



 очередная история



 очерк



 повесть



 политика



 поэзия и лирика



 приключения



 психология



 религия



 студенту



 технические руководства



 фантастика



 философия и мистика



 художественная литература



 энциклопедии, словари



 эротика, любовные романы



в избранноеконтакты

Параметры текста
Шрифт:
Размер шрифта: Высота строки:
Цвет шрифта:
Цвет фона:

  | while u <> 0 do begin
  | | restore (u);
  | | u := u - 1;
  | end;
  | while k <> 1 do begin
  | | exchange (1, k);
  | | k := k - 1;
  | | restore (1);
  | end;
  end;

     Несколько замечаний.

     Метод, использованный при сортировке деревом, бывает полез-
ным в других случах. (См. в главе 6 (о типах данных)  раздел  об
очереди с приоритетами.)

     Сортировка слиянием хороша тем, что она на  требует,  чтобы
весь  сортируемый  массив  помещался в оперативной памяти. Можно
сначала отсортировать такие куски, которые помещаются  в  памяти
(например, с помощью дерева), а затем сливать полученные файлы.

     Еще один практически важный алгоритм сортировки таков: что-
бы  отсортировать массив, выберем случайный его элемент b, и ра-
зобъем массив на три части: меньшие b, равные  b  и  большие  b.
(Эта  задача  приведена в главе о массивах.) Теперь осталось от-
сортировать первую и третью части: это делается тем же способом.
Время работы этого алгоритма - случайная величина;  можно  дока-
зать, что в среднем он работает не больше C*n*log n. На практике
- он один из самых быстрых. (Мы еще вернемся к нему, приведя его
рекурсивную и нерекурсивную реализации.)

     Наконец, отметим, что сортировка за время порядка C*n*log n
может быть выполнена с помощью техники сбалансированных деревьев
(см.  главу  12), однако программы тут сложнее и константа C до-
вольно велика.

     4.3. Применения сортировки.

     4.3.1. Найти количество  различных  чисел  среди  элементов
данного массива. Число действий порядка n*log n. (Эта задача уже
была в главе о массивах.)

     Решение. Отсортировать числа, а затем посчитать  количество
различных, просматривая элементы массива по порядку.

     4.3.2. Дано n отрезков [a[i],  b[i]]  на  прямой  (i=1..n).
Найти максимальное k, для которого существует точка прямой, пок-
рытая k отрезками ("максимальное число слоев"). Число действий -
порядка n*log n.

     Решение. Упорядочим все левые и правые концы отрезков вмес-
те  (при этом левый конец считается меньше правого конца, распо-
ложеннного в той же точке прямой). Далее двигаемся слева  напра-
во,  считая  число  слоев.  Встреченный левый конец увеличивает
число  слоев  на 1, правый - уменьшает. Отметим, что примыкающие
друг к другу отрезки обрабатываются правильно: сначала идет  ле-
вый конец (правого отрезка), а затем - правый (левого отрезка).

     4.3.3. Дано n точек на плоскости. Указать (n-1)-звенную не-

1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : 11 : 12 : 13 : 14 : 15 : 16 : 17 : 18 : 19 : 20 : 21 : 22 : 23 : 24 : 25 : 26 : 27 : 28 : 29 : 30 : 31 : 32 : 33 : 34 : 35 : 36 : 37 : 38 : 39 : 40 : 41 : 42 : 43 : 44 : 45 : 46 : 47 : 48 : 49 : 50 : 51 : 52 : 53 : 54 : 55 : 56 : 57 : 58 : 59 : 60 : 61 : 62 : 63 : 64 : 65 : 66 : 67 : 68 : 69 : 70 : 71 : 72 : 73 : 74 : 75 : 76 : 77 : 78 : 79 : 80 : 81 : 82 : 83 : 84 : 85 : 86 : 87 : 88 : 89 : 90 : 91 : 92 : 93 : 94 : 95 : 96 : 97 : 98 : 99 : 100 : 101 : 102 : 103 : 104 : 105 : 106 : 107 : 108 : 109 : 110 : 111 : 112 : 113 : 114 : 115 : 116 : 117 : 118 : 119 : 120 : 121 : 122 : 123 : 124 : 125 : 126 : 127 : 128 : 129 : 130 : 131 : 132 : 133 : 134 : 135 : 136 : 137 : 138 : 139 : 140 : 141 : 142 : 143 : 144 : 145 : 146 : 147 : 148 : 149 : 150 : 151 : 152 : 153 : 154 : 155 : 156 : 157 : 158 : 159 : 160 : 161 : 162 : 163 : 164 : 165 : 166 : 167 : 168 : 169 : 170 : 171 : 172 : 173 : 174 : 175 : 176 : 177 : 178 : 179 : 180 : 181 : 182 : 183 : 184 : 185 : 186 : 187 : 188 : 189 : 190 : 191 : 192 : 193 : 194 : 195 : 196 : 197 : 198 : 199 : 200 : 201 : 202 : 203 : 204 : 205 : 206 : 207 : 208 : 209 : 210 : 211 : 212 : 213 : 214 : 215 : 216 : 217 : 218 : 219 : 220 : 221 : 222 : 223 : 224 : 225 : 226 : 227 : 228 : 229 : 230 : 231 : 232 : 233 : 234 : 235 : 236 : 237 : 238 : 239 : 240 : 241 : 242 : 243 : 244 : 245 : 246 : 247 : 248 : 249 : 250 : 251 : 252 : 253 : 254 : 255 : 256 : 257 : 258 : 259 : 260 : 261 : 262 : 263 : 264 : 265 : 266 : 267 : 268 : 269 : 270 : 271 : 272 : 273 : 274 : 275 : 276 : 277 : 278 : 279 : 280 : 281 : 282 : 283 : 284 : 285 : 286 : 287 : 288 : 289 : 290 : 291 : 292 : 293 : 294 : 295 : 296 : 297 : 298 : 299 : 300 : 301 : 302 : 303 : 304 : 305 : 306 : 307 : 308 : 309 : 310 : 311 : 312 : 313 : 314 : 315 : 316 : 317 : 318 : 319 : 320 : 321 : 322 : 323 : 324 : 325 : 326 : 327 : 328 : 329 : 330 : 331 : 332 : 333 : 334 : 335 : 336 : 337 : 338 : 339 : 340 : 341 : 342 : 343 : 344 : 345 : 346 : 347 : 348 : 349 : 350 : 351 : 352 : 353 : 354 : 355 : 356 : 357 : 358 : 359 : 360 : 361 : 362 : 363 : 364 : 365 : 366 : 367 : 368 : 369 : 370 : 371 : 372 : 373 : 374 : 375 : 376 : 377 : 378 : 379 : 380 : 381 : 382 : 383 : 384 : 385 : 386 : 387 : 388 : 389 : 390 : 391 : 392 : 393 : 394 : 395 : 396 : 397 : 398 : 399 : 400 : 401 : 402 : 403 : 404 : 405 : 406 : 407 : 408 : 409 : 410 : 411 : 412 : 413 : 414 : 415 : 416 : 417 : 418 : 419 : 420 : 421 : 422 : 423 : 424 : 425 :
главная наверх

(c) 2008 Большая Одесская Библиотека.