Случайный афоризм
Писатель, если он хорошо трудится, невольно воспитывает многих своих читателей. Эрнест Хемингуэй
 
новости
поиск по автору
поиск по тематике
поиск по ключевому слову
проба пера
энциклопедия авторов
словарь терминов
программы
начинающим авторам
ваша помощь
о проекте
Книжный магазин
Главная витрина
Книги компьютерные
Книги по психологии
Книги серии "Для чайников"
Книги по лингвистике
ЧАВо
Разные Статьи
Статьи по литературе

Форма пользователя
Логин:
Пароль:
регистрация
 детектив



 драмма



 животные



 история



 компьютерная документация



 медицина



 научно-популярная



 очередная история



 очерк



 повесть



 политика



 поэзия и лирика



 приключения



 психология



 религия



 студенту



 технические руководства



 фантастика



 философия и мистика



 художественная литература



 энциклопедии, словари



 эротика, любовные романы



Этот день в истории
В 1681 году скончался(-лась) Педро Кальдерон


в избранноеконтакты

Параметры текста
Шрифт:
Размер шрифта: Высота строки:
Цвет шрифта:
Цвет фона:

еще не напечатанные. Определим процедуру

        procedure напечатать_и_добавить (t: integer);
        begin
        | writeln (t);
        | добавить (2*t, x2);
        | добавить (3*t, x3);
        | добавить (5*t, x5);
        end;

Вот схема программы:

  напечатать_и_добавить (1);
  k := 1; { k - число напечатанных }
  {инвариант:  напечатано  в  порядке  возрастания k минимальных
  членов нужного множества; в очередях элементы, вдвое, втрое  и
  впятеро  большие напечатанных, но не напечатанные, расположен-
  ные в возрастающем порядке}
  while k <> n do begin
  | x := min (очередной (x2), очередной (x3), очередной (x5));
  | напечатать_и_добавить (x);
  | k := k+1;
  | ...взять x из тех очередей, где он был очередным;
  end;

     Пусть инвариант выполняется. Рассмотрим наименьший из нена-
печатанных элементов множества. Тогда он делится нацело на  одно
из чисел 2, 3, 5, и частное также принадлежит множеству. Значит,
оно  напечатано. Значит, x находится в одной из очередей и, сле-
довательно, является в ней первым (меньшие напечатаны, а элемен-
ты очередей не напечатаны). Напечатав x, мы должны его изъять  и
добавить его кратные.
     Длины очередей не превосходят числа напечатанных элементов.

     Следующая задача связана с графами (к которым мы вернёмся в
главе 9).

     Пусть задано конечное множество, элементы которого называют
вершинами, а также некоторое множество упорядоченных пар вершин,
называемых  ребрами. В этом случае говорят, что задан ориентиро-
ванный граф. Пару  называют ребром с началом p и концом q;
говорят также, что оно выходит из вершины p и входит  в  вершину
q. Обычно вершины графа изображают точками, а ребра - стрелками,
ведущими  из  начала  в конец. (В соответствии с определением из
данной вершины в данную ведет не более  одного  ребра;  возможны
ребра, у которых начало совпадает с концом.)

     6.2.6.  Известно, что ориентированный граф связен, т. е. из
любой вершины можно пройти в любую по  ребрам.  Кроме  того,  из
каждой  вершины  выходит столько же ребер, сколько входит. Дока-
зать, что существует замкнутый цикл, проходящий по каждому ребру
ровно один раз. Составить алгоритм отыскания такого цикла.

     Решение. Змеей будем называть непустую очередь из вершин, в
которой любые две вершины соединены ребром графа (началом  явля-
ется  та вершина, которая ближе к началу очереди). Стоящая в на-
чале очереди вершина будет хвостом змеи, последняя - головой. На
рисунке змея изобразится в виде цепи ребер графа, стрелки  ведут
от  хвоста  к голове. Добавление вершины в очередь соответствует
росту змеи с головы, взятие вершины - отрезанию кончика хвоста.

1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : 11 : 12 : 13 : 14 : 15 : 16 : 17 : 18 : 19 : 20 : 21 : 22 : 23 : 24 : 25 : 26 : 27 : 28 : 29 : 30 : 31 : 32 : 33 : 34 : 35 : 36 : 37 : 38 : 39 : 40 : 41 : 42 : 43 : 44 : 45 : 46 : 47 : 48 : 49 : 50 : 51 : 52 : 53 : 54 : 55 : 56 : 57 : 58 : 59 : 60 : 61 : 62 : 63 : 64 : 65 : 66 : 67 : 68 : 69 : 70 : 71 : 72 : 73 : 74 : 75 : 76 : 77 : 78 : 79 : 80 : 81 : 82 : 83 : 84 : 85 : 86 : 87 : 88 : 89 : 90 : 91 : 92 : 93 : 94 : 95 : 96 : 97 : 98 : 99 : 100 : 101 : 102 : 103 : 104 : 105 : 106 : 107 : 108 : 109 : 110 : 111 : 112 : 113 : 114 : 115 : 116 : 117 : 118 : 119 : 120 : 121 : 122 : 123 : 124 : 125 : 126 : 127 : 128 : 129 : 130 : 131 : 132 : 133 : 134 : 135 : 136 : 137 : 138 : 139 : 140 : 141 : 142 : 143 : 144 : 145 : 146 : 147 : 148 : 149 : 150 : 151 : 152 : 153 : 154 : 155 : 156 : 157 : 158 : 159 : 160 : 161 : 162 : 163 : 164 : 165 : 166 : 167 : 168 : 169 : 170 : 171 : 172 : 173 : 174 : 175 : 176 : 177 : 178 : 179 : 180 : 181 : 182 : 183 : 184 : 185 : 186 : 187 : 188 : 189 : 190 : 191 : 192 : 193 : 194 : 195 : 196 : 197 : 198 : 199 : 200 : 201 : 202 : 203 : 204 : 205 : 206 : 207 : 208 : 209 : 210 : 211 : 212 : 213 : 214 : 215 : 216 : 217 : 218 : 219 : 220 : 221 : 222 : 223 : 224 : 225 : 226 : 227 : 228 : 229 : 230 : 231 : 232 : 233 : 234 : 235 : 236 : 237 : 238 : 239 : 240 : 241 : 242 : 243 : 244 : 245 : 246 : 247 : 248 : 249 : 250 : 251 : 252 : 253 : 254 : 255 : 256 : 257 : 258 : 259 : 260 : 261 : 262 : 263 : 264 : 265 : 266 : 267 : 268 : 269 : 270 : 271 : 272 : 273 : 274 : 275 : 276 : 277 : 278 : 279 : 280 : 281 : 282 : 283 : 284 : 285 : 286 : 287 : 288 : 289 : 290 : 291 : 292 : 293 : 294 : 295 : 296 : 297 : 298 : 299 : 300 : 301 : 302 : 303 : 304 : 305 : 306 : 307 : 308 : 309 : 310 : 311 : 312 : 313 : 314 : 315 : 316 : 317 : 318 : 319 : 320 : 321 : 322 : 323 : 324 : 325 : 326 : 327 : 328 : 329 : 330 : 331 : 332 : 333 : 334 : 335 : 336 : 337 : 338 : 339 : 340 : 341 : 342 : 343 : 344 : 345 : 346 : 347 : 348 : 349 : 350 : 351 : 352 : 353 : 354 : 355 : 356 : 357 : 358 : 359 : 360 : 361 : 362 : 363 : 364 : 365 : 366 : 367 : 368 : 369 : 370 : 371 : 372 : 373 : 374 : 375 : 376 : 377 : 378 : 379 : 380 : 381 : 382 : 383 : 384 : 385 : 386 : 387 : 388 : 389 : 390 : 391 : 392 : 393 : 394 : 395 : 396 : 397 : 398 : 399 : 400 : 401 : 402 : 403 : 404 : 405 : 406 : 407 : 408 : 409 : 410 : 411 : 412 : 413 : 414 : 415 : 416 : 417 : 418 : 419 : 420 : 421 : 422 : 423 : 424 : 425 :
главная наверх

(c) 2008 Большая Одесская Библиотека.