Случайный афоризм
В деле сочинительства всякий (сужу по себе) делает не то, что хочет, а то, что может - и насколько удастся. Иван Сергеевич Тургенев
 
новости
поиск по автору
поиск по тематике
поиск по ключевому слову
проба пера
энциклопедия авторов
словарь терминов
программы
начинающим авторам
ваша помощь
о проекте
Книжный магазин
Главная витрина
Книги компьютерные
Книги по психологии
Книги серии "Для чайников"
Книги по лингвистике
ЧАВо
Разные Статьи
Статьи по литературе

Форма пользователя
Логин:
Пароль:
регистрация
 детектив



 драмма



 животные



 история



 компьютерная документация



 медицина



 научно-популярная



 очередная история



 очерк



 повесть



 политика



 поэзия и лирика



 приключения



 психология



 религия



 студенту



 технические руководства



 фантастика



 философия и мистика



 художественная литература



 энциклопедии, словари



 эротика, любовные романы



в избранноеконтакты

Параметры текста
Шрифт:
Размер шрифта: Высота строки:
Цвет шрифта:
Цвет фона:

подходящих выберем самое длинное. Приписав в его  конец  x[i+1],
получим искомое слово Z.

     Теперь пора воспользоваться сделанными нами приготовлениями
и  вспомнить,  что все слова, являющиеся одновременно началами и
концами данного слова, можно получить повторными применениями  к
нему функции n из предыдущего раздела. Вот что получается:

    i:=1; l[1]:= 0;
    {таблица l[1]..l[i] заполнена правильно}
    while i <> n do begin
    | len := l[i]
    | {len - длина начала слова x[1]..x[i], которое  является
    |    его концом; все более длинные начала оказались
    |    неподходящими}
    | while (x[len+1] <> x[i+1]) and (len > 0) do begin
    | | {начало оказалось неподходящим, применяем к нему n}
    | | len := l[len];
    | end;
    | {нашли подходящее или убедились в отсутствии}
    | if x[len+1] = x[i+1] do begin
    | | {x[1]..x[len] - самое длинное подходящее начало}
    | | l[i+1] := len+1;
    | end else begin
    | | {подходящих нет}
    | | l[i+1] := 0;
    | end;
    | i := i+1;
    end;

     10.4.3. Доказать, что число действий в  приведенном  только
что алгоритме не превосходит Cn для некоторой константы C.

     Решение. Это не вполне очевидно: обработка каждой очередной
буквы может потребовать многих итераций во внутреннем цикле. Од-
нако каждая такая итерация уменьшает len по крайней мере на 1, и
в этом случае l[i+1] окажется заметно меньше l[i]. С другой сто-
роны, при увеличении i на единицу величина l[i]  может  возрасти
не более чем на 1, так что часто и сильно убывать она не может -
иначе убывание не будет скомпенсировано возрастанием.
     Более точно, можно записать неравенство
    l[i+1] <= l[i] - (число итераций на i-м шаге) + 1
или
    (число итераций на i-м шаге) <= l[i] - l[i+1] + 1
и остается сложить эти неравества по всем i  и  получить  оценку
сверху для общего числа итераций.

     10.4.4.  Будем  использовать этот алгоритм, чтобы выяснить,
является ли слово X длины n подсловом слова Y длины m. (Как  это
делать  с помощью специального разделителя #, описано выше.) При
этом число действий будет не более C*(n+m), и  используемая  па-
мять  тоже. Придумать, как обойтись памятью не более Cn (что мо-
жет быть существенно меньше, если искомый  образец  короткий,  а
слово, в котором его ищут - длинное).

     Решение.  Применяем  алгоритм КМП к слову A#B. При этом вы-
числение значений l[1],...,l[n] проводим для слова X длины  m  и
запоминаем  эти  значения. Дальше мы помним только значение l[i]
для текущего i - кроме него и кроме таблицы l[1]..l[n], нам  для
вычислений ничего не нужно.

1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : 11 : 12 : 13 : 14 : 15 : 16 : 17 : 18 : 19 : 20 : 21 : 22 : 23 : 24 : 25 : 26 : 27 : 28 : 29 : 30 : 31 : 32 : 33 : 34 : 35 : 36 : 37 : 38 : 39 : 40 : 41 : 42 : 43 : 44 : 45 : 46 : 47 : 48 : 49 : 50 : 51 : 52 : 53 : 54 : 55 : 56 : 57 : 58 : 59 : 60 : 61 : 62 : 63 : 64 : 65 : 66 : 67 : 68 : 69 : 70 : 71 : 72 : 73 : 74 : 75 : 76 : 77 : 78 : 79 : 80 : 81 : 82 : 83 : 84 : 85 : 86 : 87 : 88 : 89 : 90 : 91 : 92 : 93 : 94 : 95 : 96 : 97 : 98 : 99 : 100 : 101 : 102 : 103 : 104 : 105 : 106 : 107 : 108 : 109 : 110 : 111 : 112 : 113 : 114 : 115 : 116 : 117 : 118 : 119 : 120 : 121 : 122 : 123 : 124 : 125 : 126 : 127 : 128 : 129 : 130 : 131 : 132 : 133 : 134 : 135 : 136 : 137 : 138 : 139 : 140 : 141 : 142 : 143 : 144 : 145 : 146 : 147 : 148 : 149 : 150 : 151 : 152 : 153 : 154 : 155 : 156 : 157 : 158 : 159 : 160 : 161 : 162 : 163 : 164 : 165 : 166 : 167 : 168 : 169 : 170 : 171 : 172 : 173 : 174 : 175 : 176 : 177 : 178 : 179 : 180 : 181 : 182 : 183 : 184 : 185 : 186 : 187 : 188 : 189 : 190 : 191 : 192 : 193 : 194 : 195 : 196 : 197 : 198 : 199 : 200 : 201 : 202 : 203 : 204 : 205 : 206 : 207 : 208 : 209 : 210 : 211 : 212 : 213 : 214 : 215 : 216 : 217 : 218 : 219 : 220 : 221 : 222 : 223 : 224 : 225 : 226 : 227 : 228 : 229 : 230 : 231 : 232 : 233 : 234 : 235 : 236 : 237 : 238 : 239 : 240 : 241 : 242 : 243 : 244 : 245 : 246 : 247 : 248 : 249 : 250 : 251 : 252 : 253 : 254 : 255 : 256 : 257 : 258 : 259 : 260 : 261 : 262 : 263 : 264 : 265 : 266 : 267 : 268 : 269 : 270 : 271 : 272 : 273 : 274 : 275 : 276 : 277 : 278 : 279 : 280 : 281 : 282 : 283 : 284 : 285 : 286 : 287 : 288 : 289 : 290 : 291 : 292 : 293 : 294 : 295 : 296 : 297 : 298 : 299 : 300 : 301 : 302 : 303 : 304 : 305 : 306 : 307 : 308 : 309 : 310 : 311 : 312 : 313 : 314 : 315 : 316 : 317 : 318 : 319 : 320 : 321 : 322 : 323 : 324 : 325 : 326 : 327 : 328 : 329 : 330 : 331 : 332 : 333 : 334 : 335 : 336 : 337 : 338 : 339 : 340 : 341 : 342 : 343 : 344 : 345 : 346 : 347 : 348 : 349 : 350 : 351 : 352 : 353 : 354 : 355 : 356 : 357 : 358 : 359 : 360 : 361 : 362 : 363 : 364 : 365 : 366 : 367 : 368 : 369 : 370 : 371 : 372 : 373 : 374 : 375 : 376 : 377 : 378 : 379 : 380 : 381 : 382 : 383 : 384 : 385 : 386 : 387 : 388 : 389 : 390 : 391 : 392 : 393 : 394 : 395 : 396 : 397 : 398 : 399 : 400 : 401 : 402 : 403 : 404 : 405 : 406 : 407 : 408 : 409 : 410 : 411 : 412 : 413 : 414 : 415 : 416 : 417 : 418 : 419 : 420 : 421 : 422 : 423 : 424 : 425 :
главная наверх

(c) 2008 Большая Одесская Библиотека.